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Using simulations, we construct the effective dynamics in metabasin space for a Lennard-Jones glass former.
Metabasins are identified via a scheme that measures transition rates between inherent structures and generates
clusters of inherent structures by drawing in branches that have the largest transition rates. This construction is
fundamentally different from the stochastic approach based on molecular-dynamics trajectories. The effective
dynamics in this metabasin space is shown to be Markovian but to differ significantly from the simplest trap
models. We specifically show that retaining information about the connectivity in this metabasin space is
crucial for reproducing the slow dynamics observed in this system.

DOI: 10.1103/PhysRevE.80.011501 PACS number�s�: 64.70.P�, 64.70.kj, 64.70.Q�

I. INTRODUCTION

The origin of the dramatic slowing down of dynamics in
supercooled liquids upon approaching the glass transition
temperature has been of great research interest. The
potential-energy landscape �PEL� has proved to be an impor-
tant conceptual tool for analyzing the dynamics of super-
cooled liquid �1–6�. In PEL picture, the configuration hyper-
space can be separated into a collection of potential-energy
valleys, each identified with a local minimum or “inherent
structure �IS�.” There have been many recent studies demon-
strating that the low-temperature dynamics of model super-
cooled liquids is dominated by activated dynamics between
“traps” represented by metabasins which are clusters of in-
herent structures �7–9�. In this activated regime, a natural
mechanism for glassy dynamics is provided by the trap
model �10�. Extensive numerical simulations of model glass
formers have shown that the dynamics in metabasin space
can be mapped on to the original �11� or an extended version
of the trap model �12�. The trap model framework neglects
the connectivity in the metabasin space. Since metabasins are
necessarily defined through some dynamic criteria, it can be
expected that the connectivity in this space depends on the
method of construction. An interesting question to ask is
whether a nontrivial connectivity in a metabasin space, such
as the one found in the multiple funnel landscape �13,14�,
leads to important differences from the trap model predic-
tions regarding diffusion constants and relaxation time
scales.

An important ingredient in any framework for mapping
the dynamics of a supercooled liquid to metabasin space is
the method for constructing the metabasin. In previous work,
metabasins were extracted from molecular-dynamics trajec-
tories projected on to the inherent-structure space �12�,
where it was observed that there were long stretches where
the system transitioned back and forth between a finite num-
ber of inherent structures, and these were grouped into me-
tabasins. The usefulness of the metabasin concept lies in the
enormous simplification in the dynamics that results from
projecting the supercooled-liquid dynamics on to the metaba-
sin space: this projected dynamics is �12�, and therefore,

understanding glassy dynamics reduces to the problem of
understanding the properties of this random walk. Adopting
the perspective that the aim of the metabasin construction is
to define a space in which the complex dynamics of the
supercooled liquid becomes Markovian, opens up the possi-
bility of constructing metabasins using other algorithms. In
this paper, we pursue this line of reasoning and use a me-
tabasin construction scheme based on a knowledge of the
transition rates between different inherent structures. With
the metabasins defined, we �a� test whether a trap model with
these metabasins as the traps provides an adequate descrip-
tion of the observed dynamics of the supercooled liquid, �b�
include the connectivity in the metabasin space to extend the
trap model predictions and show that the correlations ex-
tracted from this random walk, which takes into account the
nontrivial connectivity, agrees well with the ones measured
directly in the molecular-dynamics simulations, and finally
�c� we analyze the properties of this random walk in order to
gain some insight into the slow dynamics.

II. MODEL

The model system we use to study the dynamics of super-
cooled liquid is a Lennard-Jones binary mixture consisting of
67 particles: 53 of type A and 14 of type B. To study dynam-
ics in configuration space, it is essential to focus on small
systems since many features get washed out for larger sys-
tems �4�. The simulation box used in our study is a cube with
periodical boundary condition. All particles have the same
mass m, and they interact via a Lennard-Jones potential
v�r�=4���� /r�12− �� /r�6�, where r is the distance between
them. The interaction parameters, depending on the types of
participating particles, are �AA=1.0, �AA=1.0, �AB=1.5, �AB
=0.8, �BB=0.5, and �BB=0.88 �15�. In the following, all
quantities will be expressed in reduced units, with the unit of
length as �AA, the unit of energy as �AA, and the unit of time
as �m�AA

2 /�AA�1/2 �16�. The number density of particles is 1.2.
To accommodate the box with periodic boundary conditions,
the potential is shifted and truncated with a quadratic cutoff
�16–19�, which ensures continuity of the potential and its
gradient at the cut-off radius.
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The modified potential is

vc�r� = v�r� − v�rc� −
�r2 − rc

2�
2rc

�dv�r�
dr

�
r=rc

= 4����/r�12 − ��/r�6 + �6��/rc�12 − 3��/rc�6��r/rc�2

− 7��/rc�12 + 4��/rc�6� , �1�

for r�rc and vc�r�=0 for r�rc. Since the cut-off distance
should be smaller than half of the box size, a cut-off distance
rc=1.9 is used. This cutoff makes the potential shallower
than the original �15�, and, therefore, the ratio between A and
B particles is adjusted to minimize the chances of crystalli-
zation. The velocity form of Verlet algorithm is used to solve
the Newtonian equation, with �t=0.001. Temperature is fixed
by resampling the velocities from a Boltzmann distribution
after every 10240 simulation steps. Initial configurations are
generated by first equilibrating the system at T=5, then at
T=2, and then slowly cooling down to the temperatures of
interest with cooling rate �3.33�10−6 �20� �smaller cooling
rates are used at lower temperatures�. At each of these tem-
peratures, the system is equilibrated for a time much longer
than �at least an order of magnitude� the estimated
	-relaxation time before any data is collected for measure-
ment.

The temperature range considered is from T=0.7 to T
=0.48. For the truncated shallower potential used in this
work, over this temperature range, the supercooled liquid
slows down significantly with values of the 	-relaxation time
approaching 103, yet its equilibrium properties can be stud-
ied in simulations. Studies using a potential very similar to
the one employed here �differing only in the cut-off length�
have shown that finite-size effects are negligible in 65-
particle systems �8,12�. Specifically, it has been shown that
the diffusion constant obtained from a system of this size is
identical to that of a 1000 particle system �8�, and it has also
been shown that it is possible to obtain information about
lengths scales of dynamical heterogeneities in the context of
an extended trap model for a 65-particle system �12�. Size of
the cooperatively rearranging region during a metabasin tran-
sition can indeed be larger than that involved in a dynamical
heterogeneity �21�. In the discussion section, we address spe-
cific finite-size issues in the context of the conclusions
reached in this paper.

III. INHERENT STRUCTURES

ISs are obtained using conjugate gradient minimization
techniques during the simulation �3,6�. Although, theoreti-
cally, inherent structures can be labeled by their exact poten-
tial energy, there is a danger of labeling two different inher-
ent structures with the same potential energy since any
numerical procedures measure the potential energy with fi-
nite precision. To alleviate this problem, we use a pair of
energies to label each inherent structure �V ,VBB�, where V is
the potential energy of local minima and VBB is the potential
energy between type B particles. If two different inherent
structures have the same V, their VBB are likely to be differ-
ent since they have different arrangement of particles. Imple-

menting this procedure is most important for the metabasin
construction since many thousands of IS are generated in the
process.

Given an inherent structure, an ensemble of configura-
tions in the same valley can be constructed by using a re-
stricted Boltzmann sampling that is discussed in the next
section. With each of these configurations and initial veloci-
ties sampled from the Boltzmann distribution, the waiting
time out of this IS valley can be measured using the interval-
bisection method �9�. For the temperature range considered
in this paper, it turns out that for many inherent structures,
the distribution of waiting time deviates from exponential
significantly; thus, the transition between inherent structures
is history dependent. The history dependence indicates that
there is no clear separation of scales between the time taken
to equilibrate in an IS valley and the hopping between dif-
ferent IS. This is reasonable given the fact that there can be
arbitrarily small dynamical barriers between the IS, which
are defined solely based on their property of being a
potential-energy minimum. It is expected that grouping IS
into metabasins such that IS with frequent transitions be-
tween them are in the same metabasin would lead to larger
barriers between metabasins, and, therefore, a separation of
time scales and Markovian dynamics.

IV. CONSTRUCTION OF METABASINS

Starting from one inherent structure in a hypothetical
metabasin, the system will more likely go into another in-
herent structure in the same metabasin. To construct a me-
tabasin from a randomly chosen inherent structure A, we—
therefore—need to start the simulation from A for many
times and count how many times the system goes into each
neighboring inherent structure. There must be a most fre-
quently visited neighbor B. Or in other words, A has stronger
connection to B than to any of its other neighbors. As shown
in Fig. 1, A and B get connected by an arrow. The procedure

FIG. 1. �Color online� Illustration of the construction of meta-
basins. Small circles denote inherent structures. Solid arrows denote
the strongest transition branches from corresponding metabasins.
Each big circle encloses a cluster of inherent structures, i.e., a me-
tabasin. Dash lines denote the weaker intermetabasin transitions.
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is repeated starting with B and the process of building this
cluster continues until we find a connection, which links two
ISs that are already in the cluster. All the IS in the cluster are
now assigned to one metabasin. We then check the other
neighboring IS found in the process of constructing the clus-
ter and identify their most frequently visited neighbor. If
these belong to the existing cluster then these ISs also get
assigned to the metabasin containing the starting configura-
tion A. During the construction of metabasin, tens of thou-
sands of inherent structures are encountered, which crowd
into a small range of potential energy, and as mentioned
earlier, it becomes essential to label them with both �V ,VBB�.

Our construction is similar to the hierarchical master-
equation approach in �22�. Comparing with metabasin �MB�
construction methods based on trajectories, our approach is
objective except for the fact that the computational force is
limited to explore all the details of a MB in the phase space.

The construction of the metabasin described above relies
on the transitions between IS being history independent. It is,
therefore, important to obtain an initial ensemble of states
which are in equilibrium in the valley A and use these as
starting configurations to measure the number of transitions
to other IS. All of these starting configurations should have
the same set of values for �V ,VBB� but a different set of
velocities. We implement this restricted Boltzmann sampling
by starting from an initial configuration A0, with initial ve-
locities sampled from the Boltzmann distribution and run the
simulation for n molecular dynamics �MD� steps. If the final
state A1 still belongs to the same inherent structure then we
accept it as a member of the ensemble. If not, we count A0
again as a member of the ensemble. This process is repeated
until we have a large enough ensemble of initial states to
measure the transitions from. In practice, n is chosen to be
1/4 of the estimated waiting time of the given IS and, in
order to reduce correlation, the above process is repeated
eight times before the resulting state is accepted as initial
state. The number of initial states is at least 40 and more
often chosen to be greater for better estimation of branching
ratios.

The temperature chosen to construct metabasin is T
=0.52, a temperature where IS are well defined and the dy-
namics is not prohibitively slow for metabasin construction.
The number of initial inherent structures randomly chosen
from MD trajectories is 140 and each of these constitutes the
starting point for metabasin construction according to the
algorithm described above.

The potential energy E of a metabasin is defined to be the
energy of the most probable inherent structure in it.

V. MARKOVIAN PROPERTY

A hallmark of Markovian processes is that the distribution
of waiting times is exponential �23�. Since the motivation
behind the construction of the metabasins is obtaining a Mar-
kovian model of the dynamics of supercooled liquids, the
first task is to check whether our metabasin construction
yields a space in which the dynamics is Markovian. To mea-
sure the waiting times, an ensemble of initial states is con-
structed through a restricted Boltzmann sampling in each

metabasin and at the temperature of interest. A constant-
temperature trajectory is then started from each initial state,
and the interval-bisection method �9� is used to determine the
inherent-structure sequence of the trajectory. If the inherent
structures of two successive quenches are not in the original
metabasin, the system is considered to have made a transi-
tion to a new metabasin, and the waiting time is recorded.
Since the conjugate gradient method used to minimize the
potential energy occasionally leads to a wrong inherent struc-
ture, two successive quenches are used to signal a transition.
For all the metabasins constructed according to our algo-
rithm, the waiting time distributions are founded to be expo-
nential and, therefore, the dynamics in this space is indeed
Markovian. The mean waiting time 
i for a metabasin i with
energy Ei is measured in the temperature range 0.44�T
�0.70. This mean waiting time is found to be above the
ballistic time region, indicating the separation of time scales
that we would like to see for metabasins. The mean waiting
time is characteristic of an activated process with


i�T� 	 
i
� exp�Ei

act/T� . �2�

The effective activation energy Eact is not strongly correlated
with the energy E although Eact tends to be higher for lower
lying metabasins, as shown in Fig. 2. The time scale 
�T�
demonstrates a stronger correlation with a marked increase
for deeper metabasins, as shown in Fig. 3. Since the dynam-
ics in metabasin space is Markovian, the evolution of the
probability distribution of metabasins Pi�t� is described by

d

dt
Pi�t� = −

1


i�T�
Pi�t� + 


j

wijPj�t� , �3�

where 
i is the mean waiting time of metabasin i at tempera-
ture T, and wij is the transition rate from metabasin j to
metabasin i. Envisioning the metabasins as traps of depth
Ei

act, the simplest trap model is one that ignores the connec-
tivity and characterizes the trap space by 
i and a density of
states �10�,
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FIG. 2. Effective activation energy Eact of metabasins plotted
against their energy per particle E /M, where M is the number of
particles. The activation energies are calculated according to Eq.
�2�.
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d

dt
Pi�t� = −

1


i�T�
Pi�t� + ��t�
�Ei

act� , �4�

where ��t� is a normalization factor and 
�Eact� is the den-
sity of traps with a depth Eact. In most mappings of metaba-
sin dynamics, in Lennard-Jones systems, to trap models the
energy of the metabasin, E has been considered as the depth
of the trap. As discussed earlier, we find that the activation
energy and the nominal energy of a metabasin are not
strongly correlated. We, therefore, choose to construct an ef-
fective trap model that describes dynamics in an energy land-
scape, by averaging 
i over metabasins with energies in a
small range around a value E,

d

dt
P�E,t� = −

P�E,t�

�E,T�

+ 
�E,T���t� , �5�

where

P�E,t� = 
 ��Ei − E�Pi�t� ,

1


�E,T�
=



i
��Ei − E�Pi,eq�T�/
i�T�



i
��Ei − E�Pi,eq�T�

,


�E,T� = Peq�E,T�/
�E,T� ,

��t� =



i
Pi�T�/
i



i
Pi,eq�T�/
i

, �6�

with Pi,eq�T��exp�−�Ei�, the equilibrium probability of
finding metabasin i, and Peq�E ,T� as the equilibrium distri-
bution of metabasin energy, which can be measured in the
simulation. As shown below, this effective trap model differs
from the simple trap model �10� in that 
�E ,T� depends on
temperature; reflecting the fact that Ei is not the trap depth of
metabasin i.

The metabasin energy distribution Peq�E ,T� is obtained
from simulations run at T=0.6, 0.52, and 0.48 and is
found to be well described by a Gaussian over this range

�4,8,11,24�. We have extracted the density of states from
these distribution and find that ��E�� Peq�E ,T�exp�E /T� is,
indeed, independent of temperature as shown in Fig. 4. We
use this observation to construct Peq�E ,T� at temperatures
other than the ones where it was measured explicitly and
combine this information with 
�E ,T� to obtain 
�E ,T�. This
function shown in Fig. 5 depends on temperature and is dif-
ferent from ��E�.

The effective trap model based on the deduced forms of

�E ,T�, 
�E ,T�, and ��t� provides a description of the acti-
vated dynamics near the glass transition. It is, however, a
mean-field model that ignores the connectivity in the me-
tabasin space. In order to evaluate the effects of the connec-
tivity on the dynamics, we have calculated various correla-
tion functions using this trap model and compared it to the
results of the direct molecular-dynamics simulations.

VI. TESTING THE TRAP MODEL

In this section, we compare the predictions of the effec-
tive trap model to actual simulation results. In the trap
model, correlation functions are calculated by averaging over
the sampled metabasins according to
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τ i(
T
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E/M

T=0.60
T=0.48
τ(E,T) at T=0.48

FIG. 3. Waiting time of metabasins measured at T=0.6 and 0.48
plotted against their metabasin energy per particle. The solid line is

�E ,T� calculated according to Eq. �6�.
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FIG. 4. Plot of the density of states of metabasins ��E� shifted
vertically to make lines overlap.
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FIG. 5. 
�E ,T� at T=0.6 and 0.48 calculated according to Eq.
�6�.

YASHENG YANG AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 80, 011501 �2009�

011501-4



�A�eq = 

i

Pi,eq�T�Ai =
 dEPeq�E,T�


i
Pi,eq�T���E − Ei�Ai



i
Pi,eq�T���E − Ei�

=
 dEPeq�E,T�


	

��E − E	�A	



	

��E − E	�
. �7�

Here A is the physical observable of interest. The first sum-
mation 
i is over all metabasins, while 
	 is over the me-
tabasins, sampled according to the Boltzman distribution in
the simulations. As mentioned earlier, a total of 140 metaba-
sins was sampled. In numerical calculation, the � function in
Eq. �6� is replaced by a Gaussian with a narrow width 2�2

=0.012M2, with M =67 being the number of particles.

A. Estimate of the alpha relaxation time

The 	-relaxation time 
	 was measured in the simulation
through its usual definition: Fs�q0 ,
	�=1 /e, where Fs�q , t� is
the incoherent-scattering function �25�. In this paper, Fs�q , t�
is measured for type A particles and q0=7.251 �15�. The
	-relaxation time can also be estimated from the distribution
of single-particle displacements �26�, which shows marked
non-Gaussianity at time scales on the order of 
	. The non-
Gaussianity is related to caging and a caging time scale 
s

can be extracted by measuring the time at which the prob-
ability of a type A particle having a translation less than 1 /q0
diminishes to 1 /e. As shown in Table I, in the temperature
range examined, 
s and 
	 are proportional to each other. The
caged motion of particles has also been related to hopping
between metabasins �9�.

In the trap model framework, the 	-relaxation process
corresponds to hopping between metabasins �9,11� and, in
this regime, the correlation function C�t� can be constructed
by assuming that the correlation is unity when the system is
in the same metbasin and drops to zero as it leaves the me-
tabasin �10�. For our effective trap model, this approximation
leads to

C�t� = �exp�− t/
i��eq. �8�

The expectation value is calculated according to Eq. �7�. In
Fig. 6, C�t� is plotted along with Fs�q , t�. As expected, the
shapes of the two functions are different since C�t� has no
information about the short-time dynamics. For C�t� to be a
useful tool for understanding the glass transition, however,
the change in time scale of the long-time dynamics should
closely resemble that of 
	. Within the trap model, a measure
of the 	 relaxation time is provided by the relaxation time 
c
defined by C�
c�=1 /e and measured using Eq. �8�. The val-
ues of 
c along with the values of 
	 are listed in Table I for
T=0.6, 0.52, and 0.48 and plotted in Fig. 7. It is clear that 
c
is much smaller than 
	 for all temperatures listed and, more
importantly, 
	 increases significantly faster than 
c. These
results indicate that the trap model, as defined up to now,
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C(t), T=0.60
C(t), T=0.48
Fs(t,q), T=0.60
Fs(t,q), T=0.48
Fs’(t,q), T=0.48

FIG. 6. Comparison of C�t� obtained from the effective trap
model at T=0.6 and 0.48 and the incoherent-scattering function
Fs�q , t� measured in simulations. Also shown is Fs��q , t� the
incoherent-scattering function measured from the inherent-structure
coordinates. Time is measured in scaled units �cf. text�.

TABLE I. Comparison of estimates of the 	 relaxation time, 
	, 
s, and 
c.

T 
	�T� 
s�T� 
c�T�

	�T�


	�0.6�

s�T�


s�0.6�
c�T� / 
c�0.6�

0.9 2.2 6.7 0.11 0.11

0.6 20 62 2.9 1 1 1

0.52 91 2.7 � 1021.1 4.5 4.4 3.8

0.48 3.7�102 1.1�103 32 19 18 11

0.46 8.4�102 2.5�103 42 40

100

101

102

103

1.4 1.6 1.8 2 2.2

τ α
,τ

c

1/T

τα/5
τα/5, VTF fit
τc

FIG. 7. Temperature dependence of 
	 and 
c measured in
scaled units. The solid line is the fit of 
	 to the Vogel-Tamman-
Fulcher form.
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does not capture all of the physical processes leading to the
slow dynamics.

B. Trap model prediction of the mean-squared displacement

The mean-squared displacement �MSD� ��r2�t�� of type
A particles is measured directly from the simulations and,
as shown in Fig. 8, there is caging. The diffusion constant
can be measured by looking at the long-time behavior: D
= ��r2�t�� /6t at large ��r2�t��. The temperature dependence of
D is shown in Fig. 10.

The MSD of particles in space can be mapped on to a
random walk between metabasins �9,27�. Consider a random
walk going through a sequence of N metabasins 	1→	2
→ . . . →	N+1, where 	n is the label of metabasin. The me-
tabasin coordinate sequence is labeled as ��1→��2→ . . .
→��N+1. where ��n is a 3M-component vector representing the
coordinates of M particles in metabasin n. The diffusion con-
stant DMB of this random walk can be measured from the
large N limit,

6MDMB =
����N+1 − ��1�2�rw

N�
n�rw
, �9�

where �
n�rw is the average waiting time obtained by averag-
ing over all random-walk trajectories in the metabasin space.
For each metabasin 	n, the probability of being at metabasin
i is proportional to Pi,eq /
i. Thus, �
n�rw can be calculated
from �1 /
i�eq, which is an average over all metabasins
weighted with equilibrium probabilities,

�
n�rw =



i

Pi,eq


i

i



i

Pi,eq


i

=
1

�1/
i�eq
. �10�

Assuming that at each metabasin transition the displacement
in �� space is ��, the diffusion constant DMB is, therefore,
DMB= �� /6M��1 /
i�eq. As shown in Fig. 10, DMB rides
above the D measured from the MSD of particles, again,
demonstrating that the trap model picture, which ignores all

connectivity in the metabasin space, underestimates the
slowing down of the dynamics.

VII. EFFECTS OF CONNECTIVITY
IN METABASIN SPACE

One feature of the metabasin space that has been ignored
in the trap model discussed above is that the Markovian dy-
namics describes a random walk on a graph with nontrivial
connectivity. The calculation of the diffusion constant DMB
can be improved upon by incorporating aspects of the con-
nectivity that are captured by the transition rates wij. Defin-
ing, ���n=��n+1−��n, the mean-squared displacement in �� space
can be written as

����N+1 − ��1�2�rw =��

n=1

N

���n�2�
rw

= 

n=1

N

�����n�2�rw + 2

n=2

N

����n−1 · ���n�rw

+ 2

m=2

N−1



n=m+1

N

����n−m · ���n�rw

	 N�� + 2����n−1 · ���n�rw� . �11�

Here, we ignored ����n−m ·���n�rw for m�1. Then the expres-
sion of DMB becomes

6MDMB 	 �1/
i�eq�� + 2����n−1 · ���n�rw� . �12�

To calculate ����n−1 ·���n�rw, one first picks the metabasin 	n at
time step n to be a specific one, say i, and averages over all
possible metabasins j at step n−1 and over all possible me-
tabasins j� at step n+1 followed by averaging over all pos-
sible metabasins i at step n. For a particular 	n= i, the prob-
ability of having a metabasin j� at n+1 is wj�i /
kwki
=wj�i
i. Similarly, the probability of having a metabasin j at
step n−1 must be wji
i. Thus,

����n−1 · ���n�i = ����n−1�i · ����n�i

= �

j

wji
i���ij� · �

j�

wj�i
i��� j�i� , �13�

with ���ij ���i−�� j. Two facts should be noticed: �1� the dimen-
sion of ��, i.e., the number of independent coordinates �d
=3M −3=198� is very high and �2� for many metabasins the
connectivity is sparse, with strong connections only to one
other metabasin. An example is provided by the metabasins
A and B in Table II. Because of �1�, any pair ���ij and ��� j�i
with j�� j can be considered as two random vectors in a
high-dimensional space and, hence, ���ij ·��� j�i	0. The ex-
ception is of course when j= j�, i.e., when the system hops
back and forth between two metabasins i and j, and
���ij ·��� j�i=−���� ji�2=−�. So we have

����n−1 · ���n�i 	 − 

j

�wji
i�2� = − pi
2� , �14�

where pi
2�
 j�wji
i�2 is the probability of return to the pre-

vious metabasin. For those metabasins that have many neigh-

10-4

10-2

100

102

10-3 10-2 10-1 100 101 102 103 104

<
δr

2 (t
)>

t

FIG. 8. MSD of type A particles plotted as a function of time t
measured in scaled units. The lines correspond to T=1.5, 0.9, 0.7,
0.6, 0.56, 0.52, 0.48, and 0.46, top to bottom at t�1.
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bors, each with similar �and low� branching ratio wj�i
i, such
as metabasins C and D in Table II, the return probability is
small.

Averaging Eq. �14� over all possible metabasins i, one
obtains

����n−1 · ���n�rw =



i

Pi,eq


i
����n−1 · ���n�i



i

Pi,eq


i

	 −
��pi

2/
i�eq

�1/
i�eq
,

�15�

and the expression for the diffusion constant becomes

DMB 	
�

6M
��1 − 2pi

2�/
i�eq. �16�

The branching ratios wji
i are measured for all the sampled
metabasins and pi

2’s are calculated. As shown by the ex-
amples in Fig. 9, the return probability pi

2 is relatively low at
high temperatures. But, as the temperature decreases, pi

2 in-
creases significantly for some metabasins. This is because
some of the transition branches are suppressed as tempera-
ture decreases. According to Eq. �16�, high pi

2 makes the
diffusion constant smaller. Increasing values of pi

2 is, there-
fore, another source of the slow dynamics and one that is not
captured in the trap model.

In Fig. 10, the prediction of Eq. �16� is compared to mea-
sured D�T�. It shows that incorporating the return probability
pi

2 has a significant effect on DMB and improves the agree-
ment with the measured D. In �9�, Doliwa and Heuer were
able to predict the diffusion constant without considering the
return probability due to the fact that the metabasins were
constructed from trajectories and the inherent structures that
were connected by quick hops were grouped together into
the same metabasin. The dynamics in the space of MB de-
fined in this manner satisfies more stringent requirements
�28�, inducing pi

2=0. In this work, metabasins were instead
constructed from the transition branch ratio of inherent struc-
tures, without any consideration of the absolute values of the
barrier heights between metabasins. The advantage of this
method is that it is not based on a stochastic sampling and is
more objective. The only limitations of this method are �a�
that a temperature needs to be chosen a priori to construct
the metabasins, which was chosen to be T=0.52 in this work,
and �b� that because of the high dimensionality of the
inherent-structure space simulations cannot explore the part
of the space that is rarely accessed and, therefore, this
method will miss some inherent structures belonging to a
metabasin.

Our construction gives rise to a graph which is much
more inhomogeneous and the mean-field assumption of
the trap model is not a good approximation. The connectiv-
ity of the metabasin space can also be captured through
the measurement of the transition rates. To emphasize, the
effective dynamics in the metabasin space is certainly Mar-
kovian but the random walk lives on a graph with nontrivial
connectivity.

VIII. DISCUSSION

In this work, we have presented a technique for construct-
ing metabasins using branching ratios of transitions between
inherent structures. This is different from the usual method
based on molecular-dynamics trajectories �4�. The dynamics

TABLE II. The branching ratio wji
i of four different metaba-
sins at T=0.52.

i A B C D

wji
i 0.87 0.61 0.11 0.13

0.05 0.24 0.06 0.07

0.02 0.06 0.05 0.05

0.007 0.01 0.04 0.04

0.006 0.01 0.04 0.03

0.003 0.01 0.04 0.03

… … … …
pi

2 0.76 0.43 0.03 0.04

0

0.2

0.4

0.6

0.8

1

1.4 1.6 1.8 2 2.2

p2

1/T

A
B
C
D

FIG. 9. Comparison of pi
2�T� the return probabilities of the four

metabasins listed in Table II.
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D

1/T

D(T)

VTF fit of D(T)
<1/τi>/340

<(1-2pi
2)/τi>/340

FIG. 10. Comparison of the temperature dependence of the mea-
sured diffusion constant D of type A particles, with the predictions
of the trap model, and the trap model modified to include a finite
return probability. The relationship between the diffusion constant
and 
i in Eq. �16� has an undetermined constant, which was chosen
to be 1/340 in this figure.
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in the space of these metabasins is Markovian and can be
described as an activated process in an energy landscape.
A mean-field trap model that ignores the connectivity of
the metabasins, however, underestimates the slowing down
of the dynamics with decreasing temperature. We show that
incorporating the connectivity through a set of return prob-
abilities leads to quantitative agreement between the pre-
dicted and measured temperature dependence of the diffu-
sion constant. This result demonstrates that connectivity is an
essential element of the effective dynamics in the metabasin
space, in the temperature range analyzed �0.48�T�0.7�.

All of our results regarding the structure of the metabasin
space are deduced from measurement of transition rates.
Since we are interested in individual metabasin transitions, it
was necessary to choose a small system size in order to avoid
simultaneous rearrangements of different parts of the system
�4,21�. We do not study real-space dynamics and, therefore,
have no information regarding the shape or size of the re-
gions involved in a metabasin transition. Recent studies �21�
of metabasin transitions in a Lennard-Jones system with a
similar potential and, consisting of 150 particles, indicated
that the regions involved are compact and can involve more
than 60 particles. These results would imply that most of the
particles in our simulation box are participating in a metaba-
sin transition, and it is possible that the simulation box is not
large enough to capture all metabasin transitions. Our simu-
lation box with fewer than 150 particles is still larger than
twice the cut-off radius for the potential used and, therefore,
as in Ref. �21�, the box size does not affect the interactions
between particles. The transition rates measured in the simu-
lations should, therefore, not be affected strongly by finite-
size effects if the small system signals transition events that
would involve much larger regions if the 67 particles were
embedded within a much larger system. Simulations and
single-molecule experiments �29,30� indicate that a probe
molecule can be sensitive to events that involve regions
much larger than the one that the probe molecule can sense
directly. We are reasonably confident that the main conclu-
sions reached in this study apply to macroscopic systems,
even though our study might quantitatively underestimate
some dynamical parameters. The similarity of the diffusion
constant of the small system to that of larger systems �8�, in
the temperature regime analyzed, is a further indication that
the system studied does not suffer from strong finite-size
effects. We emphasize that our main focus has been to estab-
lish the nature of the effective dynamics in metabasin space
�not real space� that best captures the dynamical features
observed in direct simulations of our model system. In the

model system, we find that the change in connectivity with
decreasing temperature is an important feature that affects
the slowness of the dynamics.

At temperatures higher than �0.7, the mean waiting time
of metabasins approaches the ballistic time scale and map-
ping the dynamics to metabasin space loses its utility. At
temperatures lower than �0.45, the return probabilities be-
come so large that higher-order terms in Eq. �11� need to be
included and the effective dynamics loses its simplicity. The
mapping to metabasin space is, therefore, most useful in the
range 0.45�T�0.7 At the high end of this temperature
range, the connectivity is reasonably homogeneous, and the
return probabilities are low. In this regime, effective trap
models capture the essential features of the slow dynamics.
As the system is cooled, some of the connections are sup-
pressed more strongly than the others. The connectivity be-
comes sparse, resulting in higher return probabilities, and
break down of the assumption—underlying the trap model—
that once the system escapes from a trap it chooses one from
a fixed distribution of trap depths that does not have any
connectivity information. It is clear that the difference be-
tween connections, i.e., the inhomogeneity of connectivity,
causes the connectivity to be sparse at low temperatures. At
the same time, we find no obvious correlation between return
probability and metabasin energy and, therefore, metabasins
of different energies seem to have similar connectivity envi-
ronment.

Instead of metabasins, Kim and Keyes �31� considered
the strong return dynamics between inherent structures of a
supercooled CS2 system and postulated that the return dy-
namics could be coarse grained to the motion within metaba-
sins. In this paper, however, we showed that even after
coarse-graining the strongly connected inherent structures
into metabasins at a temperature in the middle of the range of
interest to the slow dynamics, the connectivity between me-
tabasins plays a significant rule, especially at low tempera-
tures. Return dynamics appears to be less important for some
small systems �32�. In general, however, if the multiple fun-
nel landscape �13,14� is an adequate representation of the
energy minima then any definition of metabasins based on a
single temperature will have to include the influence of re-
turn dynamics at low enough temperatures.
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